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Recent, large fires in the western United States have rekindled
debates about fire management and the role of natural fire
regimes in the resilience of terrestrial ecosystems. This real-world
experience parallels debates involving abstract models of forest
fires, a central metaphor in complex systems theory. Both real and
modeled fire-prone landscapes exhibit roughly power law statis-
tics in fire size versus frequency. Here, we examine historical fire
catalogs and a detailed fire simulation model; both are in agree-
ment with a highly optimized tolerance model. Highly optimized
tolerance suggests robustness tradeoffs underlie resilience in dif-
ferent fire-prone ecosystems. Understanding these mechanisms
may provide new insights into the structure of ecological systems
and be key in evaluating fire management strategies and sensi-
tivities to climate change.

resilience

From the scale of individual plants up to the entire planet, fire
plays a central role in structuring natural terrestrial systems.

Although the importance of fire is generally under appreciated
(1), consistent fire-related patterns can be observed everywhere.
Exposure to fire over evolutionary time scales has led to similar
adaptations in widely separated species (2), including strategies
of fire resistance (e.g., thick protective bark) and even fire
dependence for regeneration. For example, many plant species
in fire-prone environments require smoke-related chemical cues
for seed germination (3–5), and serotiny (i.e., seed dormancy
until cones are exposed to heat) is common to several conifers
(6, 7). Effects of fire can also be observed at the global scale,
influencing the distribution of different vegetation types and
entire biomes (8, 9). Although we have a moderate understand-
ing of what controls fire behavior and its effects at different
scales (Fig. 1), much less is known about interactions between
these scales and how emergent properties of ecosystems are
generated. Despite several decades of work on ecosystem patch
dynamics generated by fire or other disturbances (10–13), the
importance of spatial patterns and processes at different scales
remains at the forefront of modern ecology (14–16).

At relatively broad spatiotemporal scales, many fire size
distributions exhibit roughly power law statistics, in which the
probability P(l) of a fire greater than or equal to size l is given
by the inverse size raised to a power �: P(l) � l��. The surprising
consistency of this form provides a starting point for links to
models and mechanisms for structure in complex natural systems
exposed to recurring wildfires (17–19). The fire regime of an
ecosystem is the collective outcome of multiple drivers, such as
ignition patterns, climate, and vegetation characteristics (Fig. 1).
The influence of fire then feeds back to affect vegetation
distributions. The small loops in Fig. 1 illustrate the strong
feedbacks between fire and the control parameters, and the
arrows emphasize the feedbacks that act between scales. To-
gether these factors govern the evolution of a fire regime, leading
to characteristic patterns and approximate recurrence intervals
for fires of different sizes, reflecting aspects of ecosystem
structure at a relatively coarse resolution. Although a fire regime
is also characterized by distributions of fire frequencies, inten-
sities, and timing, many of these factors covary, and emphasis at
the ecosystem scale is often on fire sizes.

Highly optimized tolerance (HOT) is a conceptual framework
for examining organization and structure in complex systems
(18). Theoretically, HOT builds on models and mathematics
from physics and engineering, and identifies robustness tradeoffs
as a principle underlying mechanism for complexity and power
law statistics. HOT has been discussed in the context of a variety
of technological and natural systems, including wildfires (18, 22).
A quantitative prediction for the distribution of fire sizes has
come from an extremely simple analytical HOT model, referred
to as the PLR (probability–loss–resource) model (22). As a
precursor to results presented later in this article, Fig. 2 dem-
onstrates the PLR prediction and truncated power law statistics
(23) for several fire history catalogs. This plot represents the raw
data as rank or cumulative frequency of fires P(l) greater than
or equal to a given size as a function of size l measured in km2.
In the forestry and ecology literature, fire size statistics have
been analyzed primarily for correlations between fire size and
other variables, such as climate, vegetation type, or suppression
by humans (see, e.g., ref. 24–26). The fact that fire statistics are
indeed described by power laws was identified relatively recently
(27), initially in the context of self-organized criticality (17). A
more accurate statistical fit was later proposed by using HOT
(22). A very recent analysis of fire size distributions has con-
firmed power law fits for many parts of the United States (28),
but the mechanism generating these consistent patterns is still
under investigation.

There are several striking features of Fig. 2 that will be
discussed in more detail and which motivate the rest of this
article. One highlight is the nearly identical form (i.e., the same
exponent � for the power law) of many fire history data sets,
suggesting some common mechanism, despite the diversity of the
data from very different fire-prone environments. Another
notable aspect is the equally perfect fit of the HOT PLR model
to the data. The PLR model is both extremely simple and
explicitly based on constrained optimization, so the striking fit
raises a variety of questions that we can only begin to address.
What is the significance of the consistent fire size statistics for
different ecosystems? Even if an ecosystem appears to be
optimized in some sense, how can this be captured in a model as
simple as PLR? Is the fit accidental, or has PLR captured an
essential tradeoff in the structure of fire-prone ecosystems?

Each of these questions is by itself an enormous and compli-
cated research problem, and we primarily aim to frame the
questions and offer small steps in promising directions. Specif-
ically, our approach is to reexamine and extend the PLR model
statistical fits to several fire history catalogs. To investigate
parameters that are influential in generating different fire size
distributions, we focus on a long-term simulation model (HFire)
(29), which represents an intermediate level of resolution in the
processes controlling fire occurrence and propagation in an
ecosystem. This model has no explicit ‘‘optimization’’ but instead
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simply aims to capture, as faithfully as available data and
standard models allow, the various elements known to affect the
behavior of individual fires. Our working hypothesis is that the
natural feedbacks associated with ecological processes over time
have led to vegetation patterns that are well suited (if not
completely ‘‘optimized’’) to the local fire regime, so that by
modeling current conditions with reasonable fidelity, we may be
capturing the net result of some underlying mechanism for
ecosystem resilience. We end by focusing on inherent tradeoffs
that influence the spread of wildfires and ecological responses to
them, comparing in one direction with the simple PLR model,
and in the other direction with the much greater complexity of
real ecosystems. Although the remaining gaps in knowledge are
still large, the simulated and historical data analyzed here allow
insights to the above questions, indicating promising areas for
further research.

PLR Model and Wildfire Statistics
HOT emphasizes specialized configurations of interacting com-
ponents, tuned via biological mechanisms (30–32) or engineer-
ing design (33, 36, 74, 75) to be robust to fluctuations and
variability in the environment (37, 38). A key concept from HOT
theory is that tuning for robustness involves tradeoffs subject to
constraints and that the very mechanisms and interdependencies
which increase robustness to common events also introduce new
sensitivities or fragilities to rare or unanticipated disturbances. In
ecological applications the word ‘‘optimization’’ is perhaps more
aptly replaced by ‘‘organization,’’ reflecting the distinction be-
tween HOT and random, disorganized configurations, and high-
lighting the importance of structured interdependencies that
evolve via feedback among and between biotic and abiotic
variables. It should be noted here that evidence of organization
does not imply a designer; indeed, optimization per se is not
essential for HOT to apply. The most salient outcome of HOT
models are the consequences associated with more resources
being allocated to common events and less to rare ones. In
terrestrial ecosystems, this tendency may lead to dominant
patterns of species distributions and plant community structures
that reflect the prevailing environmental conditions, whereas
other patterns may reflect acclimation to marginal conditions or
adaptations to infrequent extreme events. Such partitioning and
tradeoffs are likely to arise in any sensible model involving design
or evolution of resilient systems.

The PLR model is the simplest, most abstract HOT model, and
complete mathematical details are presented elsewhere (22, 39).
Here, we briefly summarize the basic setup and solution, which
we use in this article to compare wildfire data with the HFire
simulations. In the context of a managed forest, ‘‘losses’’ repre-
sent areas burned, whereas ‘‘resources’’ would reflect effort
spent to minimize those losses on average. The PLR model has
event categories i with relative probability pi and loss li, which is
a function li � f(ri) solely of the resources ri that are allocated to
the category. For wildfires, the resources vs. loss relationship is
assumed to be f(ri) � (c�d)(ri

�d � 1), which incorporates a cutoff
at small fire sizes, and normalizes so that 0 � ri � 1 with f (1) �
0, and c a constant. The dimensionality here is that of the
burnable substrate, d � 2, which arises from the characterization
of fire shapes as roughly two-dimensional, compact, area-filling
regions, enclosed by one-dimensional perimeters at which fire is
extinguished. The resources that may constrain fire sizes are
assumed to scale with the linear length of the perimeter, leading
to this form of f(ri) (22, 39), and are subject to an overall
constraint ri � R on the total resources R that are available. The
PLR solution then divides the resources in a manner that
minimizes the expected burn loss J over the spectrum of possible
events:

J��� pili�li�f(ri),� ri � R�. [1]

This HOT PLR model can be solved analytically (22) and in the
limit of large numbers of events has a continuous approximation
(18, 39) as a cumulative distribution P(l) � Prob(size � l) of the
form

P(l)�A[(C�l)���(C�L)��], [2]

with � � 1�d � 1�2. This form, which is approximately a power
law P(l) � l ��, holds over a range of magnitudes between small
(C) and large (L) size cutoffs (23), representing physical or
observational limits on different ends of the fire size spectrum,
the only ‘‘free’’ parameters in the model. The constant A
normalizes the units of P, which is typically either the rank or
cumulative probability, and thus depends on the number of
events in a data record. The curves in Fig. 2 represent just such

Fig. 1. Controls on fire at different scales. Dominant factors that influence
fire at the scale of a flame, a single wildfire, and a fire regime. This is an
extension of the traditional ‘‘fire triangle’’ concept (20, 21), here including
broad scales of space and time, the feedbacks that fire has on the controls
themselves (small loops), as well as feedbacks between processes at different
scales (arrows).

Fig. 2. Cumulative fires P(l) vs. size l and comparison with the PLR HOT
model. The four data sets (points) represent our reanalysis of unscaled data
obtained from ref. 27 and include 4,284 fires on U.S. Fish and Wildlife Service
lands (1986–1995; black circles), 120 of the largest fires in the western United
States (1150–1960) determined from tree ring data (blue circles), 164 fires in
Alaskan boreal forests (1990–1991; red squares), and 298 fires in the Austra-
lian Capital Territory (1926–1991; green circles). The data represents rank
order frequency and are well described by the PLR model (Eq. 2) with d � 2
(solid black curves passing through points). The straight dashed line with slope
�0.15 is shown for comparison and corresponds to the exponent of the
self-organized criticality forest fire model (27). The dashed line of slope �0.5
corresponds to the asymptotic exponent for the PLR HOT model (22).
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cumulative probability vs. loss statistics for fires with li the area
burned in a fire, and the data are compared with the formula in
Eq. 2.

As has been recognized before (18), the fit between PLR
predictions and a variety of real data in Fig. 2 is remarkable,
given the severe abstractions involved. In the PLR model, events
are not assumed to have any intrinsic differences other than their
probability of occurrence, and thus different losses are entirely
due to the distribution of resources. More realistic models (e.g.,
HFire) would include additional variation in all of the aspects of
event initiation and propagation, as suggested by Fig. 1. Our aim
here is to use the consistency between PLR predictions and real
data to motivate a deeper examination of more mechanistic
modeling and additional details of real wildfires.

Additional wildfire data we analyzed come from the mapped
fire history of Los Padres National Forest (LPNF) (25, 40), and
it provides a baseline for the HFire simulations described in the
next section. LPNF is a relatively large region (8,700 km2) in
central coastal California, and it is dominated by chaparral
shrublands, a plant community with many fire-adapted species.
To compare the LPNF data with the HOT PLR prediction (Eq.
2), the cutoff values chosen are C � 0.1 and L � 1,000, which are
roughly the smallest (0.1 km2) and largest (890 km2) fire sizes in
the database, respectively. The LPNF data record (Fig. 3) has
�800 fires, with a total 9,900 km2 burned over an 85-yr period
of record. The median fire size in this data set is 0.8 km2, the
mean is 12 km2, and the SD is 55 km2. These large ratios between
median, mean, and SD reflect the high variability of the data,
which is captured by the coefficient of variation CV � SD�
mean � 55�12 � 4.6. [For an exponential distribution, median�
mean � ln(2), and CV � 1.] Of the total 9.900 km2 of fires, half
of the burned area occurs in the largest 15 events, comprising
�2% of the fires. The largest 124 fires, which constitute 15% of
the total number of fires, are responsible for 90% of the burned
area. Thus, the fire regime is dominated by the rare, large events
(25), similar to the other data sets (27) in Fig. 2.

The approximate power laws shown here are important for
several reasons. Most fires in the data sets are relatively small,
and many others are so small that they are not even recorded in
wildfire catalogs. Nonetheless, most of the area burned is in the

few largest fires associated with the tails of the distributions.
From a fire planning and management perspective, it would be
helpful to predict the return intervals of larger events from
power law statistics. However, this type of extrapolation is not
appropriate using power law fits to the noncumulative proba-
bility density, as some have suggested (27, 28, 41). Very different
factors can drive smaller versus larger wildfires (25, 40, 42, 43),
resulting in exponent variations in the power law statistics of
wildfire catalogs (44, 45). A large size cutoff (i.e., L in Eq. 2)
should therefore be fit to the cumulative distribution to reflect
the maximum fire sizes, resulting in a truncated model that
captures changes in the large event tails and avoids artifacts of
bin width selection in the noncumulative probability density.
Without this specification, relatively large errors will occur in
predicting large event probabilities (23).

For real fire-prone systems, the most concrete analogy of the
HOT resource allocation model occurs in managed forests where
fuel treatments are constructed in advance to protect regions
where risk is presumed high. As a general strategy, fire man-
agement may attempt to optimally allocate suppression person-
nel or fuel modifications, given available resources and land-
scape characteristics (46–48). However, even in this case, the
eventual size of any wildfire is likely to involve a mix of human
and natural factors, in addition to mechanisms that are in place
before the fire and others that are implemented or occur by
chance only after ignition. The application of HOT and PLR to
natural fire regimes is theoretically appealing, although not as
obvious as in managed forests subject to recurring wildfires. In
particular, there is no clear translation of the managed fire-
stopping ‘‘resources’’ to somehow be distributed in the context
of real fire-prone ecosystems. Even so, the size of a given fire will
be limited by natural vegetation patterns in conjunction with
topography and varying weather characteristics.

Natural vegetation patterns are distributed according to en-
vironmental preferences and tolerances of individual species,
plus local feedbacks related to fire (Fig. 1), after millennia of
ecological sorting and a varying climate. Thus, there are inherent
tradeoffs in the importance of different scales (local versus
synoptic) and processes (deterministic versus stochastic) in-
volved in generating natural fire regimes. Fundamentally, HOT
as a general approach describes nongeneric, highly structured
systems that succeed (measured by some selection processes that
weeds out less effective configurations) in the face of perturba-
tions, constraints, and tradeoffs. The resulting systems thus
reflect regularities in their environment and their history. Al-
though currently there is no known selective process acting at the
ecosystem scale, concepts that parallel key signatures of HOT,
such as robustness (resilience), fragility (vulnerability), struc-
ture, hierarchy, adaptation, and sustainability, are central to
ecological theory and environmental policy (49–52).

Developing a concrete connection to a specific ecological case
study has motivated our applications of HOT to fire-prone
landscapes, through analyses of fire statistics and the very
abstract PLR model described here. However, the statistics
predicted by the PLR model do not reveal how different
variables may affect fire size distributions, nor whether a specific
set of conditions will lead to a naturally functioning fire regime.
We therefore extend the connection to HOT in the following
section with the detailed wildfire simulator HFire. HFire incor-
porates the various mechanisms driving individual wildfires
(middle region of Fig. 1) on a landscape but does not include any
explicit ‘‘design’’ in the model, other than what arises implicitly
from the process of modeling a natural, and thus evolved,
ecosystem. We compare long-term HFire output with the his-
torical wildfire record and the predictions (Eq. 2) of the PLR
model and demonstrate that with correctly chosen fine-scale
parameters, HFire generates a range of realistic patterns over
time. Thus, the macroscopic features of an actual fire regime

Fig. 3. Fire size statistics for LPNF, HFire, and PLR and data collapse for all
data sets. Cumulative number of fires versus fire size for the LPNF (1911–1995;
blue dots) and the 500-yr HFire simulation (red dots) in the Santa Monica
Mountains. Data and simulations agree well, aside from the few largest fires
(see text). Both LPNF and HFire data are well described by the PLR HOT model
with d � 2 and appropriate large scale cutoffs. Only the LPNF PLR fit is shown
(solid black curve). The family of curves above the unscaled data illustrates the
collapse when the four data sets from Fig. 2 are combined with the three data
sets here and shifted horizontally for size, and vertically for rate, to overlap.
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(right side of Fig. 1), namely fire sizes, shapes, and recurrence
intervals, are captured through HFire, providing insight into how
fire regimes may come to exhibit the form predicted by the HOT
PLR model.

HFire Simulations
HFire (29) allows us to investigate an extended fire history on a
realistic landscape, including the dynamics of ignition patterns,
wildfire growth and extinction, and vegetation regeneration. Fire
spread is modeled at the scale of individual fires, and the primary
factors influencing fire spread at this scale are topography, weather,
and fuel characteristics (middle of Fig. 1). Similar to the commonly
used model FARSITE (53), HFire is a spatially explicit model that
incorporates local state variables for weather (e.g., humidity and
wind speed and direction), vegetation (fuel type, structure, and
accumulation), and topography (slope and aspect). HFire simulates
fire propagation using the Rothermel equations (54), a standard
framework for estimating the rate of fire spread based on values of
the state variables. Originally developed for individual wildfires
(29), here we employ HFire to perform long-term simulations of
recurring fires over a relatively large domain. Compared with
simple self-organized criticality and PLR descriptions, HFire in-
cludes substantial detail; however, it falls short of modeling the
feedbacks between fire and its environment (e.g., fire-generated
weather, fire-driven vegetation type conversions, or topographic
changes due to erosion). Higher resolution models do exist but are
not practical for statistical runs that generate multicentury catalogs
of fire patterns on real landscapes. As a mechanistic model of
moderate resolution, HFire allows us both the fidelity and flexibility
to investigate the question of what processes or mechanisms might
be structuring natural fire regimes.

For the HFire simulations, we focus on fires in a portion of
southern California. Mapped fire data at varying resolutions and
for different time periods are available, and this spatial infor-
mation can be used in pattern analysis and for association with
environmental factors in the range of ecosystem types in Cali-
fornia (Fig. 4A). In addition to the data for LPNF fires shown in
Fig. 3, we also acquired Geographic Information System maps of
the fire perimeters for the Santa Monica Mountains National
Recreation Area (SMM) in southern California (Fig. 4B). In
comparison with LPNF, which corresponds to a quite complete
record down to small fire sizes across a relatively large region
(8,700 km2), SMM is a more typical and less complete data set,

covering a relatively small region (900 km2). The SMM is a size
convenient for detailed simulations, however, and is a region for
which moderately detailed fuel maps are also possible.

Both SMM and LPNF are representative of California coast
range ecosystems, which are dominated by shrublands on rugged
landscapes, with elevations ranging from sea level to �2,500 m.
These regions are bordered by urban areas and prone to frequent
fires. Comparing the fire catalogs to historical weather condi-
tions (25, 40) reveals that larger events are strongly correlated
with extreme weather conditions, called Santa Ana winds, which
are unusually hot periods when humidity often falls below 5%
and wind speeds reach up to 80 km�h, with occasional gusts up
to twice that speed (55). The similar shrubland fire regimes of
these two regions allows us to parameterize our simulations for
the smaller SMM region but compare our numerics with the
higher quality LPNF data set, where the fire size distribution has
greater statistical significance.

In parameterizing fire regime simulations for SMM, topogra-
phy is characterized by a Geographic Information System-based
digital elevation model (100-m resolution), vegetation succes-
sion pathways correspond to the observed regional plant types,
and weather is based on statistical sampling of local historical
databases. HFire was initialized with maps of current vegetation
(predominantly coastal sage and chaparral shrubland types) and
current time-since-fire maps. After a given area of vegetation
burns, it follows successional stages of regeneration specific to its
plant community, changing fuel structure, moisture, and biomass
models (56) annually. Hourly weather conditions are drawn
stochastically from historical observations for several hundred
typical (i.e., nonextreme) days acquired from local weather
stations. Extreme weather days (i.e., Santa Ana conditions) were
isolated and included at a tunable rate, with fixed 4-day duration.
Ignitions are stochastic and spatially homogeneous on the land-
scape, with a prescribed frequency, independent of weather. A
variable threshold on the rate of spread (RoS) determines when
a fire is locally extinguished. This mechanism loosely models
effects of human fire suppression or natural fire extinction, which
are absent from the Rothermel equations.

The three adjustable parameters we tested are the rate of
Santa Ana events, the RoS for fire suppression in a cell, and the
annual rate of ignitions. Analysis of local fire histories and
surveys of the literature lead to the following average values for
baseline realistic parameter settings: eight ignitions annually,

Fig. 4. Mapped historical fire data. (A) The current statewide record of fires displayed over the major ecoregions (56) of California. (B) Regional map for the
SMM for 1925–1999, with last 10 yr highlighted in red. Most of the smaller fires were not mapped. (C) Simulated fire history for HFire over a 75-yr period, with
last 10 yr highlighted in red. This sample of simulation output corresponds to realistic parameter values determined for the region and is a subset of the HFire
output shown in Fig. 3.
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four extreme fire weather events annually, and RoS of 0.033 m�s
(�120 m�h). Using this range of input parameter values char-
acteristic of the region, HFire simulations approximate average
fire return intervals (33 yr) and realistic fire shapes (Fig. 4C) for
SMM. Like observed events, simulated wildfires exhibit a wide
range of sizes and have relatively compact shapes (Fig. 4 B and
C compares real and simulated SMM fire atlases). In both
simulated and real fire regimes, the largest fires correspond to a
substantial fraction of the study area and coincide at least in part
with extreme fire weather conditions, during which propagation
speeds reach several km�h in the prevailing wind direction (i.e.,
well in excess of the simulation parameter RoS). While these
conditions persist, fires spread through regions which would
otherwise be less likely to burn and can become very large.

Strikingly, when the simulation is run long enough that the
total number of fires coincides with the length of the LPNF data
set (roughly an order of magnitude longer time, as SMM has an
order of magnitude smaller area), the fire size distribution from
HFire match the curve describing LPNF almost perfectly. The
only noteworthy deviation occurs for the two largest fires (blue
and red dots in lower right of Fig. 3); compared with SMM, the
larger size of LPNF leads to a larger value of the large-scale
cutoff L. The HFire simulations and empirical LPNF data are
both well described by the PLR model (Eq. 2) with different
values of L. In fact, the largest event in the LPNF data set
encompasses a greater area than the entire SMM region size on
which the simulations are based. Reproducing both bulk statis-
tics for intermediate sizes and expected deviations for the largest
events, reflecting different areas of burnable substrate for
regions which are otherwise relatively similar, provides support
for the HOT PLR model.

Like a natural landscape, HFire also exhibits a sensitive
coupling between fire regime and vegetation, illustrating the
potential dangers associated with introduced exotic plant species
in a fire-prone region. For example, if a nonnative annual grass
is specified as the common fuel type during the first few years
following a fire, most ignitions lead to fires that spread easily
through the highly flammable grasses, systematically increasingly
the area covered by the grass fuel type over time. This simulated
type conversion of vegetation (i.e., arrested development of
shrubland fuels as a grassland stage) continues, until eventually
most fires are large events that cover essentially the entire
landscape. The phenomenon of nonnative grasses invading and
altering natural fire regimes is a concern in many fire-prone
ecosystems around the world (58, 59). Interestingly, the simu-
lations that replicate type conversion also depart statistically
from the results we obtain under realistic regional settings. The
statistical distributions for ‘‘broken fire regimes,’’ obtained from
HFire simulations that include exotic grasses, are characterized
by smaller exponents � (f latter curves) and excess large events.

HFire provides a promising new fire regime simulation tool for
exploring parameter sensitivities, such as those related to climate
change or management activities. Given realistic input specifi-
cations, long-term HFire simulations agree closely with actual
fire history data. These simulations also coincide nearly perfectly
with the common form predicted by the HOT PLR model,
suggesting that our parameterization of HFire has captured a
common dynamic of fire-prone ecosystems, as well as aspects of
HOT. When parameter settings deviate from the range of
realistic values, the simulation results also deviate from expected
power law statistics predicted by HOT. The agreement between
the HOT PLR model and simulated data observed here is
remarkable, given that there is no inherent ‘‘design’’ or optimi-
zation built into HFire. Fire behavior in HFire is driven by
detailed, mechanistic fire spread equations (54), which them-
selves reflect a general tradeoff in the role of fuels versus
weather (42), important in the shrubland fire regimes modeled
here (40, 60). In addition, macroscopic patterns are the cumu-

lative result of individual events, implemented at very fine spatial
and temporal scales (i.e., individual 100-m cells and seconds to
hours, respectively). Although results are promising, it remains
to be seen whether the patterns that arise through thousands of
simulations over hundreds of years are the outcome of some
ecosystem-level ‘‘organization’’ attributable to a mechanism
such as HOT.

HOT and Real Ecosystems?
The HOT framework is based on the assumption that functioning
and persistent complex systems must have inherent structure to be
robust to common perturbations and resilient in the face of a
fluctuating environment. The analytical HOT PLR model, based
on limited resources to constrain roughly two-dimensional expand-
ing fire fronts, predicts fire size distributions with a power law with
exponent � � 0.5 for an optimally arranged landscape. Several
historical fire catalogs and long-term simulations from a mecha-
nistic fire spread model match closely with the theoretical predic-
tions for resilient system behaviors, consistent with the assumption
that ecological mechanisms have led to vegetation types and
patterns which are ‘‘well suited’’ to the local environment and the
fire regime that occurs there. In fact, replotting of all of the data sets
examined here together after rescaling (i.e., shifting absolute po-
sition but not changing the shape) demonstrates just how closely
they coincide in this ‘‘collapsed’’ form (Fig. 3 Upper).

Although these findings do not prove that HOT captures the
fundamental mechanism structuring fire and vegetation dynam-
ics in terrestrial ecosystems, our results indicate that HOT or a
similar mechanism may indeed have an influence. Deliberate
design clearly plays a role in managed forests, where limited
resources to suppress fires are distributed subject to constraints.
Mechanisms associated with natural selection, on both ecolog-
ical and evolutionary time scales, clearly also affect plant species
distributions. Ultimately, these natural forces will promote the
persistence of plant communities in a manner compatible with
and sometimes dependent on a characteristic fire regime (48). To
attribute such organization and structure to HOT, however, it
would help to link these natural selective processes to inherent
tradeoffs that affect the fitness and�or persistence of plants on
fire-prone landscapes.

An admittedly simplistic starting point is to imagine an
underlying tendency in ecosystems to maximize total biomass
production, subject to constraints on resource availability (e.g.,
water, nutrients, and sunlight). On a hypothetical fire-prone
landscape, vegetation patterns would reflect a ‘‘heuristically
organized’’ balance between rapid growth and the production of
so much flammable material that fires were too frequent, large,
or intense for persistence at a given location. Over time, as
portions of the ecosystem cycle between fire and regeneration,
natural feedback mechanisms lead to species distributions and
their corresponding cycles of growth and reproduction that are
robust and resilient to common disturbances but susceptible to
rare events. It is not hard to imagine this self-organized ‘‘robust
yet fragile’’ characteristic arising from the simple scenario
outlined here, along with the potential disruptions and resorting
that could arise from climate change or an introduced species
with new growth and flammability traits (58, 61).

In real ecosystems there are many possible tradeoffs, feed-
backs, and naturally selective filters operating at multiple scales
(52, 62–64). In terms of tradeoffs in fluctuating environments,
ecologists will often consider specialists versus generalists, r
(small and numerous) versus K (few and large) reproductive
strategies, and plant allocation to growth versus defense, to name
but a few. What is often missing, however, is the notion of
positive feedbacks and self-organizing dynamics. In the case of
fire, the traditional emphasis on competitive interactions and
evolution at the species level inevitably ignores the fact that
plants, in part, create their own fire regime (Fig. 1), and they may
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even improve fitness by becoming more flammable (1, 6, 65).
Other self-reinforcing dynamics, such as positive interactions
between organisms (66, 67) and the influence of ‘‘ecosystem
engineers’’ (68), also appear more likely than competition to
entrain processes and move in the direction of tuning ecosystem
dynamics into some organized state.

How physical and biological processes, in conjunction with
both evolutionary and historical influences, result in the ‘‘co-
alescence’’ of complex and functioning natural communities is a
key open question in ecology (69). HOT offers a promising
mechanism for the evolution of structure in fire-prone ecosys-
tems, and we hope it leads to insights on ecosystem resilience and
conservation of important natural processes. Of course, histor-
ical fire catalogs constitute relatively brief snapshots of land-
scape processes, given that fire regimes and vegetation patterns
can exhibit nonequilibrium dynamics and be in transition over

extended periods of time (70, 71). We also acknowledge the
dangers of attributing beneficial or adaptive significance to what
here appears to be a consistent ‘‘functional form’’ for fire size
distributions in different fire regimes (72). A great deal of work
is clearly ahead to explain in detail how natural mechanisms lead
to the observed structure in so many fire regimes, both real and
simulated. We need to understand how ecosystems are resilient
to common environmental variations, because they may still be
vulnerable to certain rare events, regardless of whether the initial
trigger for the event is large or small (34, 35, 52, 73).
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